Mechanistic Analysis of Trehalose Synthase from Mycobacterium smegmatis

作者:Zhang Ran; Pan Yuan T; He Shouming; Lam Michael; Brayer Gary D; Elbein Alan D; Withers Stephen G*
来源:JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286(41): 35601-35609.
DOI:10.1074/jbc.M111.280362

摘要

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of alpha-aryl glucosides as well as alpha-glucosyl fluoride, thereby allowing facile, continuous assays. Reaction of TreS with 5-fluoroglycosyl fluorides results in the trapping of a covalent glycosyl-enzyme intermediate consistent with TreS being a member of the retaining glycoside hydrolase family 13 enzyme family, thus likely following a two-step, double displacement mechanism. This trapped intermediate was subjected to protease digestion followed by LC-MS/MS analysis, and Asp(230) was thereby identified as the catalytic nucleophile. The isomerization reaction was shown to be an intramolecular process by demonstration of the inability of TreS to incorporate isotope-labeled exogenous glucose into maltose or trehalose consistent with previous studies on other TreS enzymes. The absence of a secondary deuterium kinetic isotope effect and the general independence of k(cat) upon leaving group ability both point to a rate-determining conformational change, likely the opening and closing of the enzyme active site.

  • 出版日期2011-10-14