摘要

The technological implementation of hybrid organic-inorganic materials in second order nonlinear optical photonic devices depends strongly on the ability of the host matrixes to contain high loads of dipolar molecules without aggregation. Some organic molecules are often used to diminish the attracting interactions between dipolar molecules in such kind of materials, but their efficiency as inhibitors of molecular aggregation is limited by their polarizability. In this work, we report the use of silver nanoparticles as inhibitors of molecular aggregation in hybrid organic-inorganic films doped with dipolar molecules. The large polarizability of the silver nanoparticles makes them ideal moieties for the inhibition of the electrostatic interactions between dipolar nonlinear optical molecules. The average size of the silver nanoparticles in this work was 70.5 nm in diameter, they were synthesized using silver nitrate (AgNO3) as precursor and aminoethylaminopropyl-trimethoxysilane as reducing agent. These nanoparticles were immersed in SiO2 hybrid organic-inorganic sol-gel films doped with dipolar chromophores to study their effect as inhibitors of dipolar chromophores aggregation. The presence of the silver nanoparticles in the solid films was confirmed by transmission electronic microscopy and UV-Visible spectroscopy. UV-Visible spectroscopy was also used to monitor the dipolar chromophores aggregation in the SiO2 films. We found that, at room temperature, silver nanoparticles are good inhibiting chromophores aggregation in comparison with the performance of organic inhibitors.

  • 出版日期2013-4