摘要

Previous studies have shown that both pemetrexed, a cytotoxic drug, and erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), inhibit the cell growth of pancreatic cancer cells. However, whether they exert a synergistic antitumor effect on pancreatic cancer cells remains unknown. The present study aimed to assess the synergistic effect of erlotinib in combination with pemetrexed using different sequential administration schedules on the proliferation of human pancreatic cancer BXPC-3 and PANC-1 cells and to probe its cellular mechanism. The EGFR and K-ras gene mutation status was examined by quantitative PCR high-resolution melting (qPCR-HRM) analysis. BXPC-3 and PANC-1 cells were incubated with pemetrexed and erlotinib using different administration schedules. MTT assay was used to determine cytotoxicity, and cell cycle distribution was determined by flow cytometry. The expression and phosphorylation of EGFR, HER3, AKT and MET were determined using Western blotting. Both pemetrexed and erlotinib inhibited the proliferation of BXPC-3 and PANC-1 cells in a dose- and time-dependent manner in vitro. Synergistic effects on cell proliferation were observed when pemetrexed was used in combination with erlotinib. The degree of the synergistic effects depended on the administration sequence, which was most obvious when erlotinib was sequentially administered at 24-h interval following pemetrexed. Cell cycle studies revealed that pemetrexed induced S arrest and erlotinib induced G(0)/G(1) arrest. The sequential administration of erlotinib following pemetrexed induced S arrest. Western blot analyses showed that pemetrexed increased and erlotinib decreased the phosphorylation of EGFR, HER3 and AKT, respectively. However, both pemetrexed and erlotinib exerted no significant effects on the phosphorylation of c-MET. The phosphorylation of EGFR, HER3 and AKT was significantly suppressed by scheduled incubation with pemetrexed followed by erlotinib, but not by concomitant or sequential incubation with erlotinib followed by pemetrexed. In summary, our results demonstrated that the combined use of erlotinib and pemetrexed exhibited a strong synergism in BXPC-3 and PANC-1 cells. The inhibitory effects were strongest after sequential administration of pemetrexed followed by erlotinib. The synergistic effects may be related to activation of the EGFR/HER3/AKT pathway induced by pemetrexed.