摘要

Core/shell nanostructures of MNPs/inorganic materials have attracted enormous research interest due to their promising applications in bio-medicine, energy, electronics, the environment, etc. Although several approaches are available for the synthesis of these core/shell nanostructures, the use of large quantities of surfactants, multi-step synthesis procedures and long reaction times still remain as challenges to be overcome for industrial applications. In this study, a novel one-pot sonochemical approach was developed for the synthesis of core/shell iron oxide/silica and iron oxide/carbon nanostructures in aqueous medium. Interestingly, the total reaction time for the synthesis of the core/shell nanostructures is found to be shorter than for other reported methods. Moreover, transmission electron microscopy indicated that the sonochemical technique produces a uniform core/shell with a highly crystalline cubic structure. However, rod-like shaped nanostructures were obtained in the absence of ultrasound. The biocompatibility of the Fe3O4/SiO2 and Fe3O4/C nanocubes and nanorods was investigated and compared with iron oxide nanostructures in in vitro quantification of TK-6 and THP-1 cell viability using a CCK-8 assay.