摘要

According to the homeostatic regulation of sleep, sleep pressure accumulates during wakefulness, further increases during sleep deprivation and dissipates during subsequent sleep. Sleep pressure is electrophysiologically reflected by electroencephalogram slow-wave activity during non-rapid eye movement sleep, and is thought to be stable across time. During childhood and adolescence the brain undergoes massive reorganization processes. Slow-wave activity during these developmental periods has been shown in humans to follow an inverted U-shaped trajectory, which recently was replicated in rats. The goal of this study was to investigate in rats the diurnal changes of slow-wave activity during the inverted U-shaped developmental trajectory of slow-wave activity. To do so, we performed longitudinal electrocorticogram recordings, and compared the level of slow-wave activity at the beginning with the slow-wave activity level at the end of 24-h baselines in two sets of Sprague-Dawley rats. In younger animals (n=17) we investigated specific postnatal days when overall slow-wave activity increases (postnatal day 26), peaks (postnatal day 28) and decreases (>postnatal day 28). The same analysis was performed in older animals (postnatal day 48, n=6). Our results show a gain of slow-wave activity across 24h on postnatal day 26, followed by no net changes on postnatal day 28, which was then followed by a loss of slow-wave activity during subsequent days (>postnatal day 28). Older animals did not show any net changes in slow-wave activity across 24h. These results cannot be explained by differences in vigilance states. Thus, slow-wave activity during this developmental period may not only reflect the trajectory of sleep pressure but may additionally reflect maturational processes.

  • 出版日期2014-6