摘要

The use of 3D city models combined with simulation functionalities allows to quantify energy demand and renewable generation for a very large set of buildings. The scope of this paper is to determine the solar photovoltaic potential at an urban and regional scale using CityGML geometry descriptions of every building. An innovative urban simulation platform is used to calculate the PV potential of the Ludwigsburg County in south-west Germany, in which every building was simulated by using 3D city models. Both technical and economic potential (considering roof area and insolation thresholds) are investigated, as well as two different PV efficiency scenarios. In this way, it was possible to determine the fraction of the electricity demand that can be covered in each municipality and the whole region, deciding the best strategy, the profitability of the investments and determining optimal locations. Additionally, another important contribution is a literature review regarding the different methods of PV potential estimation and the available roof area reduction coefficients. An economic analysis and emission assessment has also been developed. The results of the study show that it is possible to achieve high annual rates of covered electricity demand in several municipalities for some of the considered scenarios, reaching even more than 100% in some cases. The use of all available roof space (technical potential) could cover 77% of the region's electricity consumption and 56% as an economic potential with only high irradiance roofs considered. The proposed methodological approach should contribute valuably in helping policy-making processes and communicating the advantages of distributed generation and PV systems in buildings to regulators, researchers and the general public.

  • 出版日期2017-4