摘要

The objectives of this bench-scale study were to (1) determine the optimal operational parameters and kinetics when potassium permanganate (KMnO4) was applied to in situ oxidize and remediate trichloroethylene (TCE)-contaminated groundwater and (2) evaluate the effects of manganese dioxide (MnO2) on the efficiency of TCE oxidation. The major controlling factors in the TCE oxidation experiments included molar ratios of KMnO4 to TCE (P value) and molar ratios of Na2HPO4 to Mn2+ (D value). Results show that the second-order decay model can be used to describe the oxidation when P value was less than 20, and the observed TCE decay rate was 0.8 M-1 s(-1). Results also reveal that (1) higher P value corresponded with higher TCE oxidation rate under the same initial TCE concentration condition and (2) higher TCE concentration corresponded with higher TCE oxidation rate under the same P value condition. Results reveal that significant MnO2 production and inhibition of TCE oxidation were not observed under acidic (pH 2.1) or slightly acidic conditions (pH 6.3). However, significant reduction of KMnO4 to MnO2 would occur under alkaline condition (pH 12.5), and this caused the decrease in TCE oxidation rate. Results from the MnO2 production experiments show that MnO2 was produced from three major routes: (1) oxidation of TCE by KMnO4, (2) further oxidation of Mn2+, which was produced during the oxidation of TCE by KMnO4, and (3) reduction of MnO4-1 to MnO2 under alkaline conditions. Up to 81.5% of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Moreover, the addition of Na2HPO4 would not decrease the TCE oxidation rate.

  • 出版日期2008-5-30
  • 单位中山大学; 南阳理工学院