摘要

Anatase TiO2 tree-like nanoarrays were prepared on various metal wires (Ti, W, Ni, etc.) through one-step facile hydrothermal reaction. The anatase TiO2 tree-like nanoarrays consist of long TiO2 nanowire trunks with direct charge transport channels, and a large number of short TiO2 nanorod branches with large surface areas. Fiber dye-sensitized solar cells (FDSSCs) based on the anatase TiO2 tree-like nanoarrays deposited on Ti wires can achieve outstanding power conversion efficiency (PCE) of 6.32%, while FDSSCs on W wires have lower PCE of 3.24% due to the formation of WO3 layer, which might enhance recombination of charges. When the substrate is changed to a Nicole oxide wire, a novel p-n heterojunction can be obtained. This universal method is simple, facile, and low cost for preparing anatase TiO2 treelike-nanoarrays on various metal wires, which may find potential applications in fabrication of optoelectronic devices.