摘要

A novel technique is proposed to prepare Sn-3.0Ag-0.5Cu/Cu joints at three different processing temperatures, which are called undercooled liquid (UL, 213.0 degrees C), eutectic liquid (EL, 217.0 degrees C) and normal liquid (NL, 231.0 degrees C) soldering temperatures correspondingly, and each of them is lower than, equal to and higher than Sn-3.0Ag-0.5Cu solder's melting point (217.0 degrees C), respectively. The interfacial reaction, intermetallic compound growth and mechanical performance of Sn-3.0Ag-0.5Cu/Cu joints formed during UL, EL and NL soldering processes were investigated systematically. Results show that for Sn-3.0Ag-0.5Cu solder as the undercooled liquid melt or eutectic liquid melt or normal liquid melt in the formation of joints, the thickness of interfacial intermetallic compound (IMC) layer in the joints increases with prolonging dwelling time. For three different liquid soldering processes, the change tendency of the interfacial IMC layer thickness is distinct. For joints formed at UL and EL temperatures, the excessive growth of primary Cu6Sn5 and interfacial IMC (mainly Cu6Sn5) can be suppressed during isothermally dwelling in the liquid state for more than 5min. Ball shear test results show that solder joints formed at UL and EL temperatures have lower value of the maximum shear force (MSF) than those formed during the NL soldering process. For UL and EL types of joints, the fracture occurs either by shear slide fracture totally along the shear tool tip movement plane (i.e., in-plane shear slide fracture) or by shear slide fracture initially along the shear tool tip movement plane and afterwards shear deformation fracture in the solder matrix under the plane (i.e., out-of-plane shear slide and deformation mixed-mode fracture), while the fracture takes place in NL joints only by in-plane shear slide fracture mode.