摘要

To facilitate the study of the CaMKII alpha function in vivo, a CaMKII alpha-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKII alpha-GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKII alpha and GABA. We found that GFP+ neurons were mostly positive for CaMKII alpha-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKII alpha-GFP mice is similar to the endogenous expression of CaMKII alpha protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKII alpha- neuronal populations is required.

  • 出版日期2013-6-26