摘要

Agricultural activities are frequently associated with water contamination. The spreading and storage of fertilizers, for instance, may result in groundwater contamination due to pollutants leaching into an aquifer. Nitrates and fecal bacteria are two important contaminants associated with agriculture. Thus, the development of efficient strategies for groundwater protection in agricultural areas requires an assessment of these two contaminants. Given this perspective, groundwater quality monitoring was carried out over the whole capture zone of a municipal well located in an agricultural area in the St.-Lawrence Lowlands in Quebec. Thirty-eight piezometers were installed within the roughly 2 km(2) capture area of the well to measure physico-chemical parameters such as major ions, field measured parameters (pH, electrical conductivity, dissolved oxygen, water level, temperature), delta N-15(NO3) and delta O-18(NO3) isotopic ratios, bacteriological parameters (Heterotrophic Plate Count HPC, enterococci, total coliforms, Escherichia coli) and their variations in space and time. Groundwater was sampled from the pumping well and the piezometers during 25 field campaigns in 2005, 2006 and 2007. The results demonstrate the impact of agricultural activities on nitrate contamination. They indicate high spatial and temporal variations in nitrate concentrations, from 6 to 125 mgNO(3)(-)/L within the capture area, with 40% of the samples exceeding the Quebec drinking water limit of 45 mgNO(3)(-)/L. Nitrate pollution in the municipal well exceeded 45 mgNO(3)(-)/L during 2005, but no bacteriological contamination was observed. The results also show a high variability of nitrate concentration with depth within the capture zone. Electrical conductivity appears as a good indicator of the presence of nitrate and calcium ions in this capture zone. Correlations between nitrate, calcium and chloride suggest that these ions come from the same source of fertilizer. Nitrate isotopic composition suggests that nitrate in groundwater originates from both chemical and organic fertilizers. The bacteriological results show that the extracted volume of water during sampling of a piezometer has a significant impact on the bacteria count. The variability of bacteriological pollution is important in space and time, showing a higher contamination during summer. Only 2% of the raw water samples exhibit contamination exceeding the drinking water standard for treated water. Total coliforms seem to be a good precursor of E. coli or enterococci contamination. Globally, the physico-chemical and bacteriological groundwater quality within the studied capture area and the pumping well shows contamination by nitrates, but low contamination levels by fecal bacteria.

  • 出版日期2010-6