摘要

Stroke is the leading cause of permanent adult disability in the U.S., frequently resulting in chronic motor impairments. Rehabilitation of the upper limb, particularly the hand, is especially important as arm and hand deficits post-stroke limit the performance of activities of daily living and, subsequently, functional independence. Hand rehabilitation is challenging due to the complexity of motor control of the hand. New instrumentation is needed to facilitate examination of the hand. Thus, a novel actuated exoskeleton for the index finger, the FingerBot, was developed to permit the study of finger kinetics and kinematics under a variety of conditions. Two such novel environments, one applying a spring-like extension torque proportional to angular displacement at each finger joint and another applying a constant extension torque at each joint, were compared in 10 stroke survivors with the FingerBot. Subjects attempted to reach targets located throughout the finger workspace. The constant extension torque assistance resulted in a greater workspace area (p < 0.02) and a larger active range of motion for the metacarpophalangeal joint (p < 0.01) than the spring-like assistance. Additionally, accuracy in terms of reaching the target was greater with the constant extension assistance as compared to no assistance. The FingerBot can be a valuable tool in assessing various hand rehabilitation paradigms following stroke.