摘要

This paper presents the stability analysis of a fluid-conveying micro-pipe axially loaded with a pair of piezoelectric layers located at its top and bottom surfaces. Based on Euler-Bernoulli beam theory, the governing equations of the system are derived by applying Hamilton's variational principle. Galerkin projection technique is used to extract the frequency equations. Taking into account clamped-free boundary conditions with and without intermediate support, stability of the system is investigated to demonstrate the influence of flow velocity as well as the voltage of the piezoelectric layers on the flow-induced flutter instability. It is shown that imposing voltage difference to piezoelectric layers can significantly suppress the effect of fluid flow on vibrational frequencies and thus extend the stable margins. Moreover, effects of the intermediate support on the stability of the system are examined and it is shown that for some particular range of system configuration, the instability type may change from flutter to divergence.

  • 出版日期2015-9