摘要

The mammalian ovary has a finite supply of oocytes, which are contained within primordial follicles where they are arrested in a dormant state. The number of primordial follicles in the ovary at puberty is highly variable between females of the same species. Females that enter puberty with a small ovarian reserve are at risk of a shorter reproductive lifespan, as their ovarian reserve is expected to be depleted faster. One of the roles of anti-Mullerian hormone (AMH) is to inhibit primordial follicle activation, which slows the rate at which the ovarian reserve is depleted. A simple interpretation is that the function of AMH is to conserve ovarian reserve. However, the females with the lowest ovarian reserve and the greatest risk of early reserve depletion have the lowest levels of AMH. In contrast, AMH apparently strongly inhibits primordial follicle activation in females with ample ovarian reserve, for reasons that remain unexplained. The rate of primordial follicle activation determines the size of the developing follicle pool, which in turn, determines how many oocytes are available to be selected for ovulation. This review discusses the evidence that AMH regulates the size of the developing follicle pool by altering the rate of primordial follicle activation in a context-dependent manner. The expression patterns of AMH across life are also consistent with changing requirements for primordial follicle activation in the ageing ovary. A potential role of AMH in the fertility of ageing females is proposed herein.

  • 出版日期2017-4

全文