Molecular Determinants of Microbial Resistance to Thiopeptide Antibiotics

作者:Baumann Sascha; Schoof Sebastian; Bolten Marcel; Haering Claudia; Takagi Motoki; Shin ya Kazuo; Arndtt Hans Dieter*
来源:Journal of the American Chemical Society, 2010, 132(20): 6973-6981.
DOI:10.1021/ja909317n

摘要

Ribosomally produced thiopeptide antibiotics are highly promising lead compounds targeting the GTPase-associated region (GAR) of the bacterial ribosome. A representative panel of GAR mutants suspected to confer resistance against thiopeptide antibiotics was reconstituted in vitro and quantitatively studied with fluorescent probes. It was found that single-site mutations of the ribosomal 23S rRNA binding site region directly affect thiopeptide affinity. Quantitative equilibrium binding data clearly identified A1067 as the base contributing most strongly to the binding environment. The P25 residue on the ribosomal protein L11 was essential for binding of the monocyclic thiopeptides micrococcin and promothiocin B, confirming that the mutation of this residue in the producer organism confers self-resistance. For the bicyclic thiopeptides thiostrepton and nosiheptide, all studied single-site resistance mutations on the L11 protein were still fully capable of ligand binding in the upper pM range, both in the RNA-protein complex and in isolated 70S ribosomes. These single-site mutants were then specifically reconstituted in Bacillus subtilis, confirming their efficacy as resistance-conferring. It is thus reasoned that, in contrast to modifications of the 23S rRNA in the GAR, mutations of the L11 protein do not counteract binding of bicyclic thiopeptides, but allow the ribosome to bypass the protein biosynthesis blockade enforced by these antibiotics in the wild type.

  • 出版日期2010-5-26