摘要

Myocardial infarction (MI) leads to necrosis and uncontrolled release of cellular content. Binucleated and polyploid cardiomyocytes contain high amounts of chromatin, a DNA polymer of histones which are cytotoxic. We hypothesized that chromatin from necrotic cells accumulates in the non-perfused, ischemic infarct region, causing local high concentrations of cytotoxic histones, thereby potentiating damage to the heart after MI. The endonuclease DNase1 is capable of dispersing extracellular chromatin through linker DNA digestion which could lead to a decrease in local histone concentrations and cytotoxicity. It was confirmed that after permanent coronary artery ligation in mice, extracellular histones accumulated within the infarcted myocardium. In vitro, histones caused myocyte cytotoxicity. For protection against histone-mediated cytotoxicity after MI in vivo, DNase1 was administered within the first 6 h after induction. Indeed, DNase1 accumulation in the infarcted region of the heart was observed, as well as effective disruption of extracellular cytotoxic chromatin and subsequent reduction of high local histone concentrations. Functionally, acute DNase1 treatment resulted in significantly improved left ventricular remodeling in mice as measured by serial echocardiography, while mortality, infarct size and inflammatory parameters were unaffected. Notably, improved cardiomyocyte survival within the infarct region was observed and might account for the protective effects in acutely DNase1-treated animals. Disruption of extracellular cytotoxic chromatin within the infarcted heart by acute DNase1 treatment is a promising approach to protect myocytes from histone-induced cell death and subsequent left ventricular dysfunction after MI.

  • 出版日期2015-3