摘要

Diffusion tensor imaging (DTI) is a powerful magnetic resonance imaging tool for quantitative assessment of white matter micro structure. The majority of DTI methods employ Echo Planar Imaging (EPI) because it is insensitive to motion. However, EPI suffers from distortions and signal losses induced by inhomogeneities in magnetic field susceptibility. This is particularly accentuated in murine imaging at very high magnetic fields. The purpose of this study is to demonstrate that a Snapshot Interleaved EPI acquisition block combined with a stimulated echo module for diffusion sensitization can be successfully used to obtain high quality DTI of a mouse brain at 7T. This technique preserves the EPI speed but reduces its susceptibility artifacts and signal losses. Signal to noise ratio is also reduced but remains higher than in the DTI acquisitions based on a fast low angle shot technique. In vivo results using this new approach are presented along with a full description of the methodology. Published by Elsevier B.V.

  • 出版日期2011-7-15