摘要

The basolateral nuclear complex of the amygdala (BLC) receives robust sensory inputs from the rhinal cortices (RCx) that are important for the generation of emotional behavior. The BLC is also one of the main targets of the mesolimbic dopamine (DA) system. DA potentiates cortical sensory inputs to the BLC, which leads to an increase in the excitability of BLC pyramidal cells. These findings suggest that there may be convergence of RCx and DA inputs onto the dendrites of pyramidal cells in the BLC. In the present study we used dual-labeling immunohistochemistry and anterograde tract-tracing at the ultrastructural level to test this hypothesis in the rat brain. RCx axons were labeled by Phaseolus vulgaris leucoagglutinin (PHA-L) injections, whereas tyrosine hydroxylase (TH) was used as a marker for DA axons. The extent of convergence of these axons was analyzed in the posterior subdivision of the basolateral nucleus (BLp), which is densely innervated by both inputs. RCx synapses were asymmetrical and mainly contacted dendritic spines (86.4%) and dendritic shafts (12.1%). TH-positive (TH+) terminals also mainly formed synapses (symmetrical) and appositions with spines and shafts of dendrites. However, ultrastructural analysis found a very low percentage of RCx terminals converging with DA terminals onto unlabeled dendrites (9.4%) and axons (7.5 %), or exhibiting direct contacts with TH+ terminals (3.8%). These findings suggest that the association of specific behaviorally salient sensory stimuli with dopamine release in the BLC is not dependent on a point-to-point spatial relationship of cortical and DA inputs.

  • 出版日期2010-5-21