摘要

This paper focuses on developing a network model to evaluate supply-chain reliability for the brittle commodity logistics, in which the network is composed of branches and vertices. A vertex denotes a supplier, a transfer center, or a customer and a branch connecting a pair of vertices denotes a carrier. In the brittle commodity logistics network, each supplier has limited production capacity and the production cost is counted in terms of the number of the provided goods. Moreover, the delivery capacity (e.g. number of containers) provided by any carrier is multistate because the partial capacities may be reserved for other customers, and the delivery cost is counted in terms of the consumed delivery capacity. In the brittle commodity delivery, the goods may be damaged by natural disasters, traffic accidents, collisions, and so on, such that the intact goods can not satisfy the customer demand. Hence the delivery damage should be considered while evaluating the performance of a logistics network. This paper proposes the supply-chain reliability, which is defined as the probability of the network to successfully deliver goods to the customer with the delivery damage, limited production capacity, and budget considerations, to be a performance index. In terms of minimal paths, an algorithm is developed to evaluate the supply-chain reliability. A practical case of flat glass logistics is employed to discuss the management implications of the supply-chain reliability.

  • 出版日期2016-9