摘要

This paper presents the equivalence between two- and three-level converters for Vienna-type rectifiers, proposing a simple and fast space vector modulator built on this principle. The use of this duality permits the simple compliance of all topological constraints of this type of nonregenerative three-level rectifier, enabling as well the extension of its operating range by the use of simpler two-level overmodulation schemes. The proposed algorithm is further simplified by deriving its carrier-based equivalent implementation, exploiting the direct correspondence existent between the zero-sequence vectors of Vienna-type rectifiers and the zero state vectors of two-level converters. As a result, the proposed algorithm is also capable of controlling the rectifier neutral point voltage. This feature makes it attractive as well for neutral-point-clamped inverters, complementing previous carrier-based space vector modulators developed for these converters. A complete experimental evaluation using a 2 kW digital signal processor-field programmable gate array controlled Vienna-type rectifier is presented for verification purposes, asserting the excellent performance attained by the proposed carrier-based space vector modulator.