摘要

In this paper, an effective approach based on the variable neighborhood search (VNS) algorithm is presented to solve the uncapacitated multilevel lot-sizing (MLLS) problems with component commonality and multiple end-items. A neighborhood structure for the MLLS problem is defined, and two kinds of solution move policies, i.e., move at first improvement (MAFI) and move at best improvement (MABI), are used in the algorithm. A new rule called Setup shifting is developed to conduct a more efficient neighborhood search for the MLLS problems. Computational studies are carried out on two sets of benchmark problems. The experimental results show that the VNS algorithm is capable of solving MLLS problems with good optimality and high computational efficiency as well, outperforming most of the existing algorithms in comparison.