摘要

Glaucoma is a disease characterized by progressive axonal pathology and death of retinal ganglion cells (RGCs), which causes structural changes in the optic nerve head and irreversible vision loss. Several experimental models of glaucomatous optic neuropathy (GUN) have been developed, primarily in non-human primates and, more recently and commonly, in rodents. These models provide important research tools to study the mechanisms underlying glaucomatous damage. Moreover, experimental GUN provides the ability to quantify and monitor risk factors leading to RGC loss such as the level of intraocular pressure, axonal health and the RGC population. Using these experimental models we are able to gain a better understanding of GUN, which allows for the development of potential neuroprotective strategies. Here we review the advantages and disadvantages of the relevant and most often utilized methods for evaluating axonal degeneration and RGC loss in GUN. Axonal pathology in GUN includes functional disruption of axonal transport (AT) and structural degeneration. Horseradish peroxidase (HRP), rhodamine-B-isothiocyanate (RITC) and cholera toxin-B (CTB) fluorescent conjugates have proven to be effective reporters of AT. Also, immunohistochemistry (IHC) for endogenous AT-associated proteins is often used as an indicator of AT function. Similarly, structural degeneration of axons in GUN can be investigated via changes in the activity and expression of key axonal enzymes and structural proteins. Assessment of axonal degeneration can be measured by direct quantification of axons, qualitative grading, or a combination of both methods. RGC loss is the most frequently quantified variable in studies of experimental GUN. Retrograde tracers can be used to quantify RGC populations in rodents via application to the superior colliculus (SC). In addition, in situ IHC for RGC-specific proteins is a common method of RGC quantification used in many studies. Recently, transgenic mouse models that express fluorescent proteins under the Thy-1 promoter have been examined for their potential to provide specific and selective labeling of RGCs for the study of GUN. While these methods represent important advances in assessing the structural and functional integrity of RGCs, each has its advantages and disadvantages; together they provide an extensive toolbox for the study of GUN.

  • 出版日期2015-12