摘要

We studied the effects of temperature and relative humidity on population growth and development of the psocid Liposcelis brunnea Motschulsky. L. brunnea did not survive at 43% RH, but populations increased from 22.5 to 32.5 degrees C and 55-75% RH. Interestingly, we found population growth was higher at 63% RH than at 75% RH, and the greatest population growth was recorded at 32.5 degrees C and 63% RH. At 35 C, L. brunnea nymphal survivorship was 33%, and populations declined or barely grew. L. brunnea males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 13, 82, and 5%, respectively. Female L. brunnea have three to five instars, and the percentages of females with three, four, and five instars were 18, 78, and 4%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages and nymphal survivorship. The ability of L. brunnea to multiply rather rapidly at 55% RH may allow it to thrive under conditions of low relative humidity where other Liposcelis species may not. These data give us a better understanding of L. brunnea population dynamics and can be used to help develop effective management strategies for this psocid.

  • 出版日期2009-6