摘要

This work examines numerous significant process parameters in the solvent-assistant Polymethyl methacrylate (PMMA) bonding scheme and presents two Micro-total-analysis System (mu-TAS) devices generated by adopting the optimal bonding parameters. The process parameters considered were heating temperature, applied loading, duration and solution. The effects of selected process parameters on bonding dimensions loss and strength, and subsequent optimal setting of the parameters were accomplished using Taguchi's scheme. Additionally, two mu-TAS devices were realized using a static paraffin microvalve and a dynamic diffuser micropump. The PMMA chips were carved using a CO2 laser that patterned device microchannels and microchambers. The operation principles, fabrication processes and experimental performance of the devices are discussed. This bonding technique has numerous benefits, including high bonding strength (240 kgf/cm(2)) and low dimension loss (2-6%). For comparison, this work also demonstrates that the normal stress of this technology is 2-15 times greater than that of other bonding technologies, including hot embossing, anodic bonding, direct bonding and thermal fusion bonding.

  • 出版日期2007-8