摘要

To reduce the carbon-to-nitrogen (C:N) ratio, pine tree substrate (PTS) and other wood-based substrates can be precharged with urea so that growers do not have to add extra nitrogen (N) during crop production to compensate for immobilization. However, the impact of urea hydrolysis from this addition on the substrate solution has not been documented for wood-based substrates. The objectives of these experiments were to determine how urea hydrolysis in PTS impacts substrate solution and how hydrolysis is affected by urea and lime rates. In Expt. 1, 16-month-old pine chips (from loblolly pine trees, Pinus taeda L.) were milled to make PTS and PTS was amended with 0 or 1.0 kg.m(-3) dolomitic limestone in factorial combination with urea-N rates of 0, 0.5, 1.0, 1.5, or 2.0 mg.g(-1) dry weight. Urea hydrolysis was quantified by the detection of NH4-N in the substrate solution at 0, 48, 96, and 144 hours after urea addition. Substrate pH and electrical conductivity (EC) values were also measured. In Expt. 2, non-limed PTS was treated with the same urea rates as described; NH4-N and pH were measured at 24 and 48 hours after urea addition. Substrate solutions were incubated with jackbean urease to determine the remaining urea-N amount after 144 hours in Expt. 1 and after 24 and 48 hours in Expt. 2. In Expt. 1, NH4-N increased from 0 to 48 hours for the 0 and 1.0-kg.m(-3) lime treatments and for all urea-N rates (except for the 0 rate); NH4-N did not increase thereafter. As urea-N rate increased, the amount of NH4-N increased and more N was detected for the limed PTS than in the non-limed PTS. Initial substrate pH values for the 0 and 1.0-kg.m(-3) lime treatments were 4.5 and 5.6, respectively, and peaked 48 hours after urea application; pH values were higher in the limed PTS than for the non-limed PTS. At the highest urea-N rate and after 48 hours (Expt. 1), the PTS pH value increased 3.1 units to 7.6 for the non-limed PTS and the value increased 2.3 units to 7.9 for limed PTS. In Expt. 2 the increase in PTS pH values was approximately half of the Expt. 1 pH increases. Samples treated with urease derived from jackbean had less than 2% of the initial urea amount after 144 hours in Expt. 1 and after 48 hours in Expt. 2. However, less than 13% of the total amount of urea-N added to PTS was detected as NH4-N in the non-limed treatment after 144 hours in Expt. 1 (for all urea rates); detected amounts for the 1.0-kg.m(-3) lime treatment ranged from 15.5% to 18.3%. Five percent or less of the total amount of urea-N added to PTS was detected as NH4-N in non-limed PTS after 48 hours in Expt. 2 (for all urea rates). The large amount of unrecovered NH4-N is likely explained by microbial N consumption. Using pH increase as an indication of urea hydrolysis, we found that an initial pH of 4.5 or higher (Expt. 1) resulted in twice the urea hydrolysis as an initial pH of 4.2 (Expt. 2). Initial substrate pH had a major impact on the amount of pH increase and substrate pH status and our findings suggest that the urea precharge rate should be based on the initial pH of the substrate.

  • 出版日期2014-11