摘要

In active sound control, noise shielding of a target region is achieved via additional sources (called controls) situated at the perimeter of the region. The sources protect the target region by adjusting the acoustic field near the boundary of the region. In the present paper a numerical model of active sound control based on surface potentials in 3D bounded composite regions is numerically studied. In the composite region setup, it is required that the regions be shielded from noise while allowing admissible sound that is generated in the shielded regions to be preserved. The admissible sound is usually required to propagate freely inside the protected regions or in a (selective) predetermined pattern. The adjusting approach used here does not require any knowledge of the sound sources or the properties of the propagation medium in order to obtain the controls. Moreover, the approach differs sharply from some other approaches where the detailed knowledge of the sound sources and the propagation medium is required. For the first time, numerical test cases involving both free communication and predetermined communication pattern between the regions in three dimensions are considered. In all test cases, these regions are effectively shielded from the noise while any present admissible sound is preserved. In addition, selective propagation of the admissible sound between the regions is enforced. The effect of the number of controls on their operation is also studied. Whether admissible sound is present or not, the level of noise cancellation decreases linearly as fewer controls are used. In addition to the increase in size of the interference zone, the controls become individually distinguishable.

  • 出版日期2015-7