摘要

Neutron imaging is a non-invasive method for material research on the macroscopic level. It is carried out at laboratories equipped with powerful neutron sources, suitable neutron beam lines and neutron detection systems. Decades ago neutron radiography began capturing images with film techniques. These techniques yielded excellent spatial resolution even over large fields of view. In the recent years, improvements in the detection techniques and their digitization have been the main forces driving successes in neutron imaging. Several detector options have been developed, implemented and used in practical applications in order to achieve digital information from the neutron transmission process which is needed for a quantitative evaluation of image data by sophisticated methods like neutron tomography, phase contrast imaging, neutron interferometry and time dependent studies. The most common approach in digital neutron imaging is a conversion of the neutron field information into visible light by a scintillation process, where a neutron converter is needed because neutrons do not excite directly due to their neutral charge. Low level light signals can be observed either with sensitive camera systems or by using amorphous silicon based semiconductor plate devices. However, these now established detection techniques are still limited in respect to spatial and time resolution. The best possible spatial resolution which can be achieved today is available by a system built at PSI with about 10 mu m pixel size. Recently, it was upgraded with a tilted option for an increased resolution by a factor of 4 in one direction. Scintillator based techniques are limited by the dissipation of the secondary particles. This limitation has motivated the search for new detector options. One approach is a pixilated system where the readout per incoming neutron can be used to calculate precisely the position of its impact. Such devices are realized as the TIMEPIX system already. The system was tested successfully at PSI and other neutron imaging facilities. Other options might be to use MEDIPIX devices with neutron absorbing/converting materials. A similar pixel detector, EIGER, has been developed recently at PSI and its performance in the field of neutron imaging is under investigation. For future applications at the upcoming pulsed spallation sources the time = energy resolving aspect becomes even more important. This will push the future use of pixilated systems. This article intends to describe the present state-of-the-art even if most of the presented results are obtained at PSI's leading facilities, sometimes in collaboration with our partners.

  • 出版日期2011-1