摘要

Rigorous regulation of iron absorption is required to meet the requirements of the body and to limit excess iron accumulation that can produce oxidative stress. Regulation of iron absorption is controlled by hepcidin and probably by the crypt program. Hepcidin is a humoral mediator of iron absorption that interacts with the basolateral transporter, ferroportin. High levels of hepcidin reduce iron absorption by targeting ferroportin to lysosomes for destruction. It is also proposed that ferroportin is expressed on the apical membrane and coordinates with ferroportin-hepcidin derived from the basal surface to modulate the uptake phase of iron absorption. The crypt program suggests that as crypt cells differentiate and migrate into the absorptive zone they absorb iron from the diet at levels inverse to the amount of iron taken up from transferrin. Under most circumstances, intestinal iron absorption is controlled at multiple levels that lead to hepcidin/ferroportin modulation of the enterocyte labile iron pool (LIP). It is likely that transcription of iron transport proteins involved in the apical and basolateral transport of iron are differentially regulated by separate LIPs. Iron-responsive protein (IRP) 1 and IRP2 do not appear to play a significant role in the expression of iron transport proteins, although IRP2 regulates L- and H-ferritin expression. Despite the importance of hepcidin, there is evidence of hepcidin-independent regulation of iron absorption possibly involving haemojuvelin (HJV) and neogenin, which may be up-regulated during ineffective erythropoiesis.

  • 出版日期2007-11