摘要

Designing drip irrigation systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. The exact shape of the wetted volume and moisture distribution will depend on many factors, including soil hydraulic characteristics, initial conditions, emitter discharge rate, application frequency, root characteristics, evaporation, and transpiration. Multi-dimensional nature of water flow, plant uptake and high frequency of water application increase the complexity in modelling soil moisture dynamics from trickle irrigation. Researchers used analytical methods, semi-analytical methods and numerical methods to Richards' equation using certain boundary conditions to model the infiltration from point source irrigation for use in design, install, and manage of drip irrigation systems due to their merits over direct measurements. Others developed models based on Green-Ampt equation, empirical models using regression techniques/dimensional analysis techniques/moment approach techniques/artificial neural networks on this topic to describe infiltration from a point/line sources. A review on these models developed under each category is presented in this study. Other knowledge gaps identified include (a) effect of variations in initial moisture content and packing conditions, (b) precision in observing the wetting front and soil-water content, (c) validity of soil surface boundary conditions, (d) effect of crop root architecture and its withdrawal pattern for different input parameters, (e) effects of gravitational gradients, (f) stratification in the soils, and (g) impact of soil hysteresis. The review promotes better understanding of the soil water dynamics under point source trickle emitters and helps to identify topics for more emphasis in future modelling activity.

  • 出版日期2013-5