摘要

The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model developed at the Los Alamos National Laboratory (LANL). A long-term control simulation of the LANL-POP model forced by a reconstructed coupled wind stress field over the period 1949-2001 showed that the ocean model not only simulates a reasonable climatology, but also produces a climate variability pattern very similar to observed PDV. In the Equatorial Pacific (EP) region, the decadal warming is confined in the thin surface layer. Beneath the surface, a strong compensating cooling, accompanied by a basin-wide-scale overturning circulation in opposition to the mean flow, occurs in the thermocline layer. In the North Pacific (NP) region, the decadal variability nonetheless exhibits a relatively monotonous pattern, characterized by the dominance of anomalous cooling and eastward flows. A term balance analysis of the perturbation heat budget equation was conducted to highlight the ocean's role in maintaining the PDV-like variability over the EP and NP regions. The analyses showed that strong oceanic adjustment must occur in the equatorial thermocline in association with the anomalous overturning circulation in order to maintain the PDV-like variability, including a flattening of the equatorial thermocline slpoe and an enhancement of the upper ocean's stratification (stability), as the climate shifts from a colder regime toward a warmer one. On the other hand, the oceanic response in the extratropical region seems to be confined to the surface layer, without much participation from the subsurface oceanic dynamics.

  • 出版日期2014-5

全文