摘要

The capability of DInSAR (Differential Interferometric SAR) for precise large-scale deformation analysis has been shown in various case studies. Generally, DInSAR possesses a high potential for monitoring deformation, but only the velocity component parallel to the line-of-sight direction can be measured. An alternative approach, capable to retrieve the deformation velocity in both range and azimuth direction, is the so-called spectral diversity technique. Spectral diversity is based on a phase comparison between different sub-aperture interferograms of the scene and can generally be regarded as a high-performance technique for estimating the mis-registration between complex SAR images.
In this paper, the following questions will be discussed: how to implement the spectral diversity technique for achieving the most accurate results: how to extract the full 3D deformation vector from a combination of ascending/descending passes and how to extract a surface deformation map if the data sets are not perfectly coherent. Finally, a statistical analysis of every individual processing step and an error propagation analysis is undertaken. In order to make a quantitative analysis of the technique, ENVISAT data sets of the Bam earthquake in Iran are used.

  • 出版日期2010-7