摘要

Alternative splicing is a common occurrence in many cancers. Alternative splicing is linked with decreased apoptosis and chemoresistance in cancer cells. We previously demonstrated that ARID3B, a member of the AT-rich interactive domain (ARID) family of DNA binding proteins, is overexpressed in ovarian cancer. Therefore we wanted to assess the effect of ARID3B splice forms on cell viability. We identified a novel splice form of the ARID3B gene (designated as ARID3B Sh), which lacks the C-terminal exons 5-9 present in the full-length isoform (ARID3B Fl). ARID3B Fl is expressed in a variety of cancer cell lines. Expression of ARID3B Sh varied by cell type, but was highly expressed in most ovarian cancer lines. ARID3B is modestly transcriptionally activated by epidermal growth factor receptor (EGFR) signaling through the PEA3 transcription factor. We further found that ARID3B Fl is predominantly nuclear but is also present at the plasma membrane and in the cytosol. Endogenous ARID3B Sh is present in nuclear fractions, yet, when overexpressed ARID3B Sh accumulates in the cytosol and membrane fractions. The differential localization of these isoforms suggests they have different functions. Importantly, ARID3B Fl overexpression results in upregulation of pro-apoptotic BIM and induces Tumor Necrosis Factor alpha (TNF alpha) and TNF-related apoptosis inducing ligand (TRAIL) induced cell death. The ARID3B Fl-induced genes include TNF alpha, TRAIL, TRADD, TNF-R2, Caspase 10 and Caspase 7. Interestingly, ARID3B Sh does not induce apoptosis or expression of these genes. ARID3B Fl induces death receptor mediated apoptosis while the novel splice form ARID3B Sh does not induce cell death. Therefore alternative splice forms of ARID3B may play different roles in ovarian cancer progression.

  • 出版日期2012-7-31