摘要

Carboxyl group-functionalized single-walled carbon nanotubes (SWNTs) and 2,6-pyridinedicarboxylic acid (PDC) were electropolymerized by cyclic voltammetry on a glassy-carbon electrode (GCE) surface to form composite films (SWNTs/PDC). Zirconia was then electrodeposited on the SWNTs/PDC/GCE from an aqueous electrolyte containing ZrOCl2 and KCl by cycling the potential between -1.1 V and +0.7 V at a scan rate of 20 mV s(-1). DNA probes with a phosphate group at the 5' end were easily immobilized on the zirconia thin films, because of the strong affinity between zirconia and phosphate groups. The sensors were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). EIS was used for label-free detection of the target DNA by measuring the increase of the electron transfer resistance (R-et) of the electrode surface after the hybridization of the probe DNA with the target DNA. The PAT gene fragment and polymerase chain reaction (PCR) amplification of the NOS gene from transgenically modified beans were satisfactorily detected by use of this DNA electrochemical sensor. The dynamic range of detection of the sensor for the PAT gene fragment was from 1.0 x 10(-11) to 1.0 x 10(-6) mol L-1 and the detection limit was 1.38 x 10(-12) mol L-1.