摘要

Genetic diversity and structure in Fagus crenata were studied by analyzing 14 nuclear microsatellite loci in 23 populations distributed throughout the species' range. Although population differentiation was very low (F (ST) = 0.027; R (ST) = 0.041), both neighbor-joining tree and Bayesian clustering analyses provided clear evidence of genetic divergence between populations along the Japan Sea (Japan Sea lineage) and Pacific (Pacific lineage) sides of Japan, indicating that physical barriers to migration and gene flow, notably the mountain ranges separating the populations along the Japan Sea and Pacific sides, have promoted genetic divergence between these populations. The two lineages of the nuclear genome are generally consistent with those of the chloroplast genome detected in a previous study, with several discrepancies between the two genomes. Within-population genetic diversity was generally very high (average H (E) = 0.839), but decreased in a clinal fashion from southwest to northeast, largely among populations of the Japan Sea lineage. This geographical gradient may have resulted from the late-glacial and postglacial recolonization to the northeast, which led to a loss of within-population genetic diversity due to cumulative founder effects.

  • 出版日期2009-5