摘要

The ability to evaluate the effective permeability of proppant packs is useful in predicting the efficiency of hydraulic fracture installations. In this paper we propose a computational approach combining microimaging data from X-ray computed microtomography, the simulations of flow at pore-scale, and an upscaling process which identifies the effective model parameters at the core-scale. With this computational approach applied to proppant pack we confirm the reduction in the fracture conductivity and subsequent reduction in the productivity of a hydraulically fractured reservoir due to the high flow rates and to the migration of fine particles resulting in pore throat bridging.

  • 出版日期2016-1