摘要

We constructed a fuel-flexible fuel cell consisting of an alkaline anion exchange membrane, palladium anode, and platinum cathode. When an alcohol fuel was used with potassium hydroxide added to the fuel stream and oxygen was the oxidant, the following maximum power densities were achieved at 60 degrees C: ethanol (128 mW cm(-2)), 1-propanol (101 mW cm(-2)), 2-propanol (40 mW cm(-2)), ethylene glycol (117 mW cm(-2)), glycerol (78 mW cm(-2)), and propylene glycol (75 mW cm(-2)). We also observed a maximum power density of 302 mW cm(-2) when potassium formate was used as the fuel under the same conditions. However, when potassium hydroxide was removed from the fuel stream, the maximum power density with ethanol decreased to 9 mW cm(-2) (using oxygen as oxidant), while with formate it only decreased to 120 mW cm(-2) (using air as the oxidant). Variations in the performance of each fuel are discussed. This fuel-flexible fuel cell configuration is promising for a number of alcohol fuels. It is especially promising with potassium formate, since it does not require hydroxide added to the fuel stream for efficient operation.

  • 出版日期2014-12