摘要

Redox flow batteries (RFBs) are promising electrochemical energy storage systems, for which development is impeded by a poor understanding of redox reactions occurring at electrode/electrolyte interfaces. Even for the conventional all-vanadium RFB chemistry employing V-2/V3+ and VO2+/VO2+ couples, there is still no consensus about the reaction mechanism, electrode active sites, and rate determining step. Herein, we perform Car-Parrinello molecular dynamics-based metadynamics simulations to unravel the mechanism of the VO2+/VO2+ redox reaction in water at the oxygen-functionalized graphite (11 (2) over bar0) edge surface serving as a representative carbon-based electrode. Our results suggest that during the battery discharge aqueous VO2+/VO2+ species adsorb at the surface C-O groups as inner-sphere complexes, exhibiting faster adsorption/desorption kinetics than V2+/V3+, at least at low vanadium concentrations considered in our study. We find that this is because (i) VO2+/VO2+ conversion does not involve the slow transfer of an oxygen atom, (ii) protonation of VO2+ is spontaneous and coupled to interfacial electron transfer in acidic conditions to enable VO2+ formation, and (iii) V3+ found to be strongly bound to oxygen groups of the graphite surface features unfavorable desorption kinetics. In contrast, the reverse process taking place upon charging is expected to be more sluggish for the VO2+/VO2+ redox couple because of both unfavorable deprotonation of the VO2+ water ligands and adsorption/desorption kinetics.

  • 出版日期2018-6-20