Disturbance in Z-Disk Mechanosensitive Proteins Induced by a Persistent Mutant Myopalladin Causes Familial Restrictive Cardiomyopathy

作者:Huby Anne Cecile; Mendsaikhan Uzmee; Takagi Ken; Martherus Ruben; Wansapura Janaka; Gong Nan; Osinska Hanna; James Jeanne F; Kramer Kristen; Saito Kazuyoshi; Robbins Jeffrey; Khuchua Zaza; Towbin Jeffrey A; Purevjav Enkhsaikhan*
来源:Journal of the American College of Cardiology, 2014, 64(25): 2765-2776.
DOI:10.1016/j.jacc.2014.09.071

摘要

BACKGROUND Familial restrictive cardiomyopathy (FRCM) has a poor prognosis due to diastolic dysfunction and restrictive physiology (RP). Myocardial stiffness, with or without fibrosis, underlie RP, but the mechanism(s) of restrictive remodeling is unclear. Myopalladin (MYPN) is a messenger molecule that links structural and gene regulatory molecules via translocation from the Z-disk and I-bands to the nucleus in cardiomyocytes. Expression of N-terminal MYPN peptide results in severe disruption of the sarcomere. OBJECTIVES The aim was to study a nonsense MYPN-Q529X mutation previously identified in the FRCM family in an animal model to explore the molecular and pathogenic mechanisms of FRCM. METHODS Functional (echocardiography, cardiac magnetic resonance [CMR] imaging, electrocardiography), morphohistological, gene expression, and molecular studies were performed in knock-in heterozygote (Mypn(WT/Q526X)) and homozygote mice harboring the human MYPN-Q529X mutation. RESULTS Echocardiographic and CMR imaging signs of diastolic dysfunction with preserved systolic function were identified in 12-week-old Mypn(WT/Q526X) mice. Histology revealed interstitial and perivascular fibrosis without overt hypertrophic remodeling. Truncated Mypn(Q526X) protein was found to translocate to the nucleus. Levels of total and nuclear cardiac ankyrin repeat protein (Carp/Ankrd1) and phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Erk1/2), Erk1/2, Smad2, and Akt were reduced. Up-regulation was evident for muscle LIM protein (Mlp), desmin, and heart failure (natriuretic peptide A [Nppa], Nppb, and myosin heavy chain 6) and fibrosis (transforming growth factor beta 1, alpha-smooth muscle actin, osteopontin, and periostin) markers. CONCLUSIONS Heterozygote Mypn(WT/Q526X) knock-in mice develop RCM due to persistence of mutant Mypn(Q526X) protein in the nucleus. Down-regulation of Carp and up-regulation of Mlp and desmin appear to augment fibrotic restrictive remodeling, and reduced Erk1/2 levels blunt a hypertrophic response in Mypn(WT/Q526X) hearts.

  • 出版日期2014-12-30