Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)

作者:Reutter P; Su H*; Trentmann J; Simmel M; Rose D; Gunthe S S; Wernli H; Andreae M O; Poeschl U
来源:Atmospheric Chemistry and Physics, 2009, 9(18): 7067-7080.
DOI:10.5194/acpd-9-8635-2009

摘要

We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the kappa-Kohler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution ( accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (N-CD) for a wide range of updraft velocities (omega=0.25-20 m s(-1)) and aerosol particle number concentrations (N-CN=200-10(5) cm(-3)) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (omega/N-CN), we found three distinctly different regimes of CCN activation and cloud droplet formation: (1) An aerosol-limited regime that is characterized by high omega/N-CN ratios (>approximate to 10(-3) m s(-1) cm(3)), high maximum values of water vapour supersaturation (S-max > approximate to 0.5%), and high activated fractions of aerosol particles (N-CD/N-CN > approximate to 90%). In this regime N-CD is directly proportional to N-CN and practically independent of omega. ( 2) An updraft-limited regime that is characterized by low omega/N-CN ratios (< approximate to 10(-4) ms(-1) cm(3)), low maximum values of water vapour supersaturation (S-max < approximate to 0.2%), and low activated fractions of aerosol particles (N-CD/N-CN < approximate to 20%). In this regime N-CD is directly proportional to w and practically independent of N-CN. ( 3) An aerosol-and updraft-sensitive regime ( transitional regime), which is characterized by parameter values in between the two other regimes and covers most of the conditions relevant for pyro-convection. In this regime N-CD depends non-linearly on both N-CN and omega. In sensitivity studies we have tested the influence of aerosol particle size distribution and hygroscopicity on N-CD. Within the range of effective hygroscopicity parameters that is characteristic for continental atmospheric aerosols (kappa approximate to 0.05-0.6), we found that N-CD depends rather weakly on the actual value of kappa. A compensation of changes in kappa and S-max leads to an effective buffering of N-CD. Only for aerosols with very low hygroscopicity (kappa <0.05) and also in the updraft-limited regime for aerosols with higher than average hygroscopicity (kappa > 0.3) did the relative sensitivities partial derivative lnN(CD)/partial derivative ln kappa approximate to (Delta N-CD/N-CD)/(Delta kappa/kappa) exceed values of similar to 0.2, indicating that a 50% difference in kappa would change N-CD by more than 10%. The influence of changing size distribution parameters was stronger than that of particle hygroscopicity. Nevertheless, similar regimes of C-CN activation were observed in simulations with varying types of size distributions ( polluted and pristine continental and marine aerosols with different proportions of nucleation, Aitken, accumulation, and coarse mode particles). In general, the different regimes can be discriminated with regard to the relative sensitivities of N-CD against omega and N-CN partial derivative lnN(CD)/partial derivative ln omega and partial derivative lnN(CD)/partial derivative lnN(CN)). We propose to separate the different regimes by relative sensitivity ratios, (partial derivative lnN(CD)/partial derivative ln omega)/(partial derivative lnN(CD)/partial derivative lnN(CN)) of 4: 1 and 1: 4, respectively. The results of this and related studies suggest that the variability of initial cloud droplet number concentration in convective clouds is mostly dominated by the variability of updraft velocity and aerosol particle number concentration in the accumulation and Aitken mode. Coarse mode particles and the variability of particle composition and hygroscopicity appear to play major roles only at low supersaturation in the updraft-limited regime of CCN activation (S-max <0.2%).

  • 出版日期2009