摘要

The study on brain-computer interface technology to achieve the automatic control of unmanned vehicles can help people with disabilities to realize self-service travel, thus attracting more and more attention from scholars and manufacturers. In this paper, the visual evoked potentials of human brain are extracted by visual stimulator of FPGA, and the evoked potential vector by waveform matching recognition algorithm on Labview platform, which are used as the control signals of brain-computer interface to realize automatic control of unmanned vehicle. The article explains the basis of related technologies, based on which, the signal processing flow of unmanned vehicle control system is introduced. Finally, experiment on the automatic system control of unmanned vehicle based on visual evoked potentials is designed. The experiment shows that the average time for sending instructions is less than 3s, and the average correct recognition rate of instructions is higher than 90%. The present research has opened up the research on the brain-computer interface controlled unmanned vehicle field, and will have a positive effect for the ultimate realization of autonomous travel for patients with limited mobility.