摘要

Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer's disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.

  • 出版日期2017-6