A biophysical model for cardiac microimpedance measurements

作者:Pollard Andrew E*; Barr Roger C
来源:American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298(6): H1699-H1709.
DOI:10.1152/ajpheart.01131.2009

摘要

Pollard AE, Barr RC. A biophysical model for cardiac micro-impedance measurements. Am J Physiol Heart Circ Physiol 298: H1699-H1709, 2010. First published April 2, 2010; doi:10.1152/ajpheart.01131.2009.-Alterations to cell-to-cell electrical conductance and to the structural arrangement of the collagen network in cardiac tissue are recognized contributors to arrhythmia development, yet no present method allows direct in vivo measurements of these conductances at their true microscopic scale. The present report documents such a plan, which involves interstitial multisite stimulation at a subcellular to cellular size scale, and verifies the performance of the method through biophysical modeling. Although elements of the plan have been analyzed previously, their performance as a whole is considered here in a comprehensive way. Our analyses take advantage of a three-dimensional structural framework in which interstitial, intracellular, and membrane components are coupled to one another on the fine size scale, and electrodes are separated from one another as in arrays we fabricate routinely. With this arrangement, determination of passive tissue resistances can be made from measurements taken on top of the currents flowing in active tissue. In particular, our results show that measurements taken at multiple frequencies and electrode separations provide powerful predictions of the underlying tissue resistances in all geometric dimensions. Because of the small electrode size, separation of interstitial from intracellular compartment contributions is readily achieved.

  • 出版日期2010-6