A Novel Low-Molecular-Weight Compound Enhances Ectopic Bone Formation and Fracture Repair

作者:Wong Eugene*; Sangadala Sreedhara; Boden Scott D; Yoshioka Katsuhito; Hutton William C; Oliver Colleen; Titus Louisa
来源:Journal of Bone and Joint Surgery-American Volume, 2013, 95A(5): 454-461.
DOI:10.2106/JBJS.L.00275

摘要

Background: Use of recombinant human bone morphogenetic protein-2 (rhBMP-2) is expensive and may cause local side effects. A small synthetic molecule, SVAK-12, has recently been shown in vitro to potentiate rhBMP-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype. The aims of this study were to test the ability of SVAK-12 to enhance bone formation in a rodent ectopic model and to test whether a single percutaneous injection of SVAK-12 can accelerate callus formation in a rodent femoral fracture model. Methods: Collagen disks with rhBMP-2 alone or with rhBMP-2 and SVAK-12 were implanted in a standard athymic rat chest ectopic model, and radiographic analysis was performed at four weeks. In a second set of rats (Sprague-Dawley), SVAK-12 was percutaneously injected into the site of a closed femoral fracture. The fractures were analyzed radio-graphically and biomechanically (with torsional testing) five weeks after surgery. Results: In the ectopic model, there was dose-dependent enhancement of rhBMP-2 activity with use of SVAK-12 at doses of 100 to 500 mu g. In the fracture model, the SVAK-12-treated group had significantly higher radiographic healing scores than the untreated group (p = 0.028). Biomechanical testing revealed that the fractured femora in the 200 to 250-mu g SVAK-12 group were 43% stronger (p = 0.008) and 93% stiffer (p = 0.014) than those in the control group. In summary, at five weeks the femoral fracture group injected with SVAK-12 showed significantly improved radiographic and biomechanical evidence of healing compared with the controls. Conclusions: A single local dose of a low-molecular-weight compound, SVAK-12, enhanced bone-healing in the presence of low-dose exogenous rhBMP-2 (in the ectopic model) and endogenous rhBMPs (in the femoral fracture model).

  • 出版日期2013-3-6