摘要

Quasicrystalline aluminium alloys and aluminium based nanocomposites with the advantage of high strength over commercial aluminium alloys have been studied for many years. In this work a nano-quasicrystalline Al-Fe-Cr-Ti alloy powder and a nanocomposite consisting of a mixture of a nano-quasicrystalline alloy and nanosize gamma-Al2O3 powders were produced through mechanical milling with different milling speeds. It has been observed that a higher milling time or milling speed can improve the homogeneity of the gamma-Al2O3 distribution. The alpha-Al crystallite size decreases and the hardness increases with the milling time. The smallest crystallite size (14 nm) and the highest hardness value (638 HV10g) were obtained for the nanocomposite after 30 h of milling at 250 rpm. As the alpha-Al crystallite size is the main change in the microstructure during the ball milling process, the change in the hardness of the milled powders was found to follow a Hall-Fetch type relation with an exponent of 0.25.

  • 出版日期2017-4-15