Impact of hollow-atom formation on coherent x-ray scattering at high intensity

作者:Son Sang Kil*; Young Linda; Santra Robin
来源:Physical Review A, 2011, 83(3): 033402.
DOI:10.1103/PhysRevA.83.033402

摘要

X-ray free-electron lasers (FELs) are promising tools for structural determination of macromolecules via coherent x-ray scattering. During ultrashort and ultraintense x-ray pulses with an atomic-scale wavelength, samples are subject to radiation damage and possibly become highly ionized, which may influence the quality of x-ray scattering patterns. We develop a toolkit to treat detailed ionization, relaxation, and scattering dynamics for an atom within a consistent theoretical framework. The coherent x-ray scattering problem including radiation damage is investigated as a function of x-ray FEL parameters such as pulse length, fluence, and photon energy. We find that the x-ray scattering intensity saturates at a fluence of similar to 10(7) photon/angstrom(2) per pulse but can be maximized by using a pulse duration much shorter than the time scales involved in the relaxation of the inner-shell vacancy states created. Under these conditions, both inner-shell electrons in a carbon atom are removed, and the resulting hollow atom gives rise to a scattering pattern with little loss of quality for a spatial resolution > 1 angstrom. Our numerical results predict that in order to scatter from a carbon atom 0.1 photon per x-ray pulse, within a spatial resolution of 1.7 angstrom, a fluence of 1 x 10(7) photons/angstrom(2) per pulse is required at a pulse length of 1 fs and a photon energy of 12 keV. By using a pulse length of a few hundred attoseconds, one can suppress even secondary ionization processes in extended systems. The present results suggest that high-brightness attosecond x-ray FELs would be ideal for single-shot imaging of individual macromolecules.

  • 出版日期2011-3-8