摘要

Mengzi locates in the south 20 km away from the outlet of Nandong subsurface river, and has been suffering from water deficiency in recent years. It is necessary to find out the water resources underground according to the geological characteristics such as the positions and buried depths of the underground river to improve the civil and industrial environments. Due to the adverse factors such as topographic relief, bare rocks in karst terrains, the geophysical approaches, such as Controlled Source Audio Magnetotellurics and Seismic Refraction Tomography, were used to roughly identify faults and fracture zones by the geophysical features of low resistivity and low velocity, and then used the raise-a-la-masse method to judge which faults and fracture zones should be the potential channels of the subsurface river. Five anomalies were recognized along the profile of 2.4 km long and showed that the northeast river system has several branches. Drilling data have proved that the first borehole indicated a water bearing channel by a characteristics of rock core of river sands and gravels deposition, the second one encountered water-filled fracture zone with abundant water, and the third one exposed mud-filled fracture zone without sustainable water. The results from this case study show that the combination of Controlled Source Audio Magnetotellurics, Seismic Refraction Tomography and mise-a-la-Masse is one of the effective methods to detect water-filled channels or fracture zones in karst terrains.