摘要

In this study, Ag nanoparticles loaded CoFe2O4/Fe2O3 nanorod arrays on carbon fiber cloth have been successfully fabricated by a hydrothermal route followed by a calcination treatment and photochemical reduction process. The as-prepared composite has been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The obtained Ag@CoFe2O4/Fe2O3 nanorod arrays show excellent SERS performance, which provides enhancement factors (EF) as high as about 1.2 x 10(8) for Rhodamine 6G (R6G). The SERS signals collected over a 20 mu m x 20 mu m area show relative standard deviation lower than 12%, suggesting good SERS signal uniformity. In addition, the Ag@CoFe2O4/Fe2O3 nanorod arrays can be used as an effective photo-Fenton catalyst photocatalytical degradation of R6G. It was found that 99.15% of R6G can be degraded in an hour. This bifunctional composite that can act both as SERS substrates and as photo-Fenton catalyst would facilitate the cleaning and recycling of SERS substrates for reusing through a photocatalytic process, as well as facilitate the integration of rapid detection and effective degradation of organic pollutants.