摘要

Introduction: Parkinson disease is a neurodegenerative condition involving motor, cognitive, and linguistic deficits. It is important to know why all these different deficits co-occur in the affected people. This paper aims to clarify whether these comorbid deficits result from the selective impairment of a computational primitive, namely, a context-sensitive computational ability according to Chomsky's Hierarchy (a well-established research tool in comparative neuroscience). Patients and methods: A total of 15 medicated subjects with Parkinson disease and 15 controls were selected. They were matched in age and education. A battery of tasks was designed to test 3 different domains (motor capacities, cognition, and language) and 2 different computational abilities (context-free and context-sensitive operations). Results: Significant differences between groups were observed only regarding the linguistic task involving context-sensitive computations (correferences). Conclusions: The observed deficits in our patients with Parkinson disease cannot be explained in terms of the selective impairment of one only unspecific, low-level computational process. At the same time, differences between patients and controls are expected to be greater if the former are not medicated. Moreover, we should pursue in the search of (this kind of) computational primitives than can be selectively impaired in people with Parkinson disease, because they may help to achieve an earlier diagnosis of this condition.

  • 出版日期2016-5

全文