摘要

A finite piece method is proposed to simulate three-dimensional slit flows in extrusion sheet dies in this paper. The simulations concern incompressible fluids obeying different constitutive equations: generalized Newtonian (Carreau-Yasuda law), and viscoelastic Phan-Thien Tanner (PTT) models. Numerical simulations are carried out for the isothermal and nonisothermal flows of polymer melt through sheet dies. The Picard iteration method is utilized to solve nonlinear equations. The results of the finite piece method are compared with the three-dimensional (3D) finite element method (FEM) simulation and experiments. At the die exit, the relative error of the volumetric flow between the finite piece method and the 3D FEM is below 1.2%. The discrepancy of the pressure distributions does not exceed 6%. The Maximum error of the uniformity index between the simulations and experiments is about 2.3%. It shows that the solution accuracy of the finite piece method is excellent, and a substantial amount of computing time and memory requirement can be saved.