摘要

This paper introduces a novel five-level nested neutral point piloted (NNPP) converter and analyzes the operating principle of five-level NNPP converter. This paper presents a novel space vector pulse width modulation (SVPWM) algorithm based on gh coordinate for five-level NNPP converter. First, the common-mode voltage is reduced by choosing the appropriate redundant switching states. After that, the floating-capacitor voltage balance control strategy is presented. The appropriate switch combinations of each phase are determined by the control requirements of floating-capacitor voltages respectively and the hardware mapping method of the switching states is presented. Furthermore, the neutral-point voltage balance control strategy is presented. In order to balance the dc-link capacitor voltages, the seven-segment switching sequence is selected according to the control requirements of dc-link capacitor voltages and the neutral-point voltage regulatory factor is introduced to regulate the durations of the redundant switching states in a switching cycle. Finally, the validity of the novel SVPWM algorithm with decoupling control strategies of floating-capacitor voltages and dc-link capacitor voltages is verified by the experimental results of five-level NNPP converter under steady-state and dynamic conditions.